Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(E)-1,2-Bis\{4-[dimethyl(vinyl)silyl]phenyl\}ethene

Mariusz Majchrzak, Bogdan Marciniec and Maciej Kubicki*

Department of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

Correspondence e-mail: mkubicki@amu.edu.pl

Received 21 November 2007; accepted 24 November 2007

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \mathrm{~A}$; R factor $=0.045 ; w R$ factor $=0.120 ;$ data-to-parameter ratio $=12.8$.

The molecule of the title compound, $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{Si}_{2}$, is situated about a centre of symmetry. The whole diphenylethene fragment is planar and the $\mathrm{C}_{\mathrm{ar}}-\mathrm{Si}-\mathrm{C}_{3}$ group is rotated by ca 30° with respect to the plane of the benzene ring. The crystal structure is stabilized by some $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts as well as van der Waals interactions.

Related literature

For related literature, see: JanBen \& Krause (2005); Maciejewski et al. (2003); Majchrzak et al. (2005, 2007).

Experimental

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Si}_{2}$
$M_{r}=348.62$
Monoclinic, $C 2 / c$
$a=21.762$ (2) A
$b=6.2880$ (9) A
$c=19.159$ (2) \AA
$\beta=124.05(2)^{\circ}$

$$
V=2172.2(7) \AA^{3}
$$

$$
Z=4
$$

Mo $K \alpha$ radiation
$\mu=0.16 \mathrm{~mm}^{-1}$
$T=295$ (2) K
$0.3 \times 0.2 \times 0.15 \mathrm{~mm}$

supplementary materials

Acta Cryst. (2008). E64, o93 [doi:10.1107/S1600536807062976]

(E)-1,2-Bis 4 -[dimethyl(vinyl)silyl]phenyl\}ethene

M. Majchrzak, B. Marciniec and M. Kubicki

Comment

The synthesis of $\{(E)$-1,2-bis(4-(dimethyl(vinyl)silyl)phenyl) $\}$ ethene, (I), consisted of two steps. During first step, the well know metathesis reaction of 4-bromostyrene was applied to obtain $\{(E)$-1,2-bis(4-bromophenyl) $\}$ ethene which was used as a substrate for the second step, the typical reaction between an aryl-halide derivative of an olefin, a Grignard reagent generated in situ and vinylchlorosilane. This kind of vinylsilane-stilbene can be used as a very efficient monomer for the synthesis of arylene-silylene-vinylene polymers, polycarbosilanes or co-polymers with suitable aromatic olefin via silylative coupling polycondensation (SCP) or polyhydrosilylation reactions (Majchrzak et al., 2005, 2007; Maciejewski et al., 2003).

The molecule of (I) is centrosymmetric with the mid-point of the central $\mathrm{C} 41=\mathrm{C} 41 \mathrm{~A}$ bond lying on a centre of symmetry (Fig. 1). The phenyl rings (planar within $0.0046(14) \AA$) are, from symmetry, co-planar. As the C 41 and Si 1 atoms are almost co-planar with these rings (deviation from the least-squares plane $=0.009$ (3) \AA and 0.054 (3) \AA, respectively), the whole diphenylethene fragment is planar. The $\mathrm{C}(\mathrm{ar})-\mathrm{Si}-\mathrm{C}_{3}$ group is rotated by ca 30° with respect to to the plane of the phenyl ring, as can be seen from the values of $\mathrm{C} 2-\mathrm{C} 1-\mathrm{Si}-\mathrm{C}(X)$ torsion angles: $28.5(2)^{\circ}$ for $X=13,-92.5(2)^{\circ}$ for $X=12$, and $148.0(2)^{\circ}$ for $X=11$. The crystal structure is stabilized by some relatively directional $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts as well as van der Waals interactions.

Experimental

First Step: A solution of 4-bromostyrene $(6.095 \mathrm{~g}, 33.30 \mathrm{mmol})$ in THF $(35 \mathrm{ml})$ was placed in a 50 ml glass two-neck mini reactor which was fitted with a condenser connected with an inert gas line. The Hoveyda-Grubbs catalyst $1^{\text {st }}$ generation $(10 \mathrm{mg}, 0.017 \mathrm{mmol})$ was added and the reaction mixture was heated at $316-318 \mathrm{~K}$ and left for 5 h . The crude product was precipitated partially from solution. After the reaction was completed, the mixture was cooled to room temperature and the excess of organic solvent was evaporated under high vacuum. The mix of yellowish crystals was recovered by filtration and washed with cold hexane ($3 \times 10 \mathrm{ml}$). The residue was recrystallized from ethanol to provide $5.46 \mathrm{~g}(16.15 \mathrm{mmol}$, yield $97 \%)(E)-4,4^{\prime}$-dibromostilbene as a colorless solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta(\right.$ p.p.m. $)$): $7.06(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-), 7.42\left(\mathrm{~d}, \mathrm{~J}_{H H}\right.$ $\left.=8.80 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{C}_{6} H_{4}-\mathrm{Br}\right), 7.52\left(\mathrm{~d}, \mathrm{~J}_{H H}=8.75 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{C}_{6} H_{4}-\mathrm{Br}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}^{2}\left(\mathrm{CDCl}_{3}, \delta(\right.$ p.p.m. $\left.)\right): 122.6\left(\mathrm{Br}-\mathrm{C}_{i}<\right)$, $127.3(-\mathrm{CH}=\mathrm{CH}-), 129.8\left(\mathrm{Br}-m-C_{6} H_{4}-\right), 132.6\left(\mathrm{Br}-o-C_{6} \mathrm{H}_{4}\right), 137.1\left(>C_{i}-\mathrm{CH}=\right) . \mathrm{MS} — \mathrm{EI}(M / z(\%)) 338(100)\left[M^{+}\right], 258$ (17), 178 (85), 152 (8), 89 (6). HRMS (m / z) calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2}$: 335.91493, found: 335.91374. m. p. 481-489 K, Lit. (JanBen \& Krause, 2005): 483 K.

Second Step: A solution of (E)-4,4'-dibromostilbene ($3 \mathrm{~g}, 8.87 \mathrm{mmol}$) in THF (15 ml) was added dropwise to a suspension of $\mathrm{Mg}(0.518 \mathrm{~g}, 21.30 \mathrm{mmol}$, whose surface was activated by use of 1,2-dibromomethane ($50 \mu L$) and vinyldimethylchlorosilane ($2.35 \mathrm{~g}, 19.51 \mathrm{mmol}$) in slighly warm THF (15 ml). After the addition was completed, the reaction mixture was heated at 318 K for 4 h . The mixture was cooled to room temperature, water (2 ml) was added, and the whole was filtered. The organic phase was left overnight with magnesium sulfate. The solvent was then evaporated and the residual

supplementary materials

solid was washed by cold hexane ($2 x 15 \mathrm{ml}$). The isolated compound was recrystallized from ethanol to yield 2.1 g of (I) $\left(6.02 \mathrm{mmol}\right.$, yield 68%) as a colourless solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right.$ (p.p.m.)): $0.29\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right), 5.82\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}_{H H}=3.8\right.$, $\left.20.1 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right), 6.11\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}_{H H}=3.8,15.1 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right), 6.34\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}_{H H}=14.6,20.1 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right), 7.11$ (s, 2H, - $\mathrm{CH}=\mathrm{CH}-$), $7.48\left(\mathrm{~d}, 4 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Si}\right), 7.54\left(\mathrm{~d}, 4 \mathrm{H}, m-\mathrm{C}_{6} H_{4}-\mathrm{Si}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta(\right.$ p.p.m. $\left.)\right):-2.8,127.3,129.8$, 135.9, 136.3, 137.8, 139.3, 140.1. ${ }^{29} \operatorname{Si} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta(\right.$ p.p.m. $\left.)\right):-10.60$. HRMS (m / z) calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Si}_{2}: 348.17295$, found 348.17284. Analysis: found C $75.72, \mathrm{H} 8.09 \% \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Si}_{2}$ requires: C $75.79, \mathrm{H} 8.1 \%$.

Refinement

Hydrogen atoms were found in difference Fourier maps and freely refined so that the range of $\mathrm{C}=\mathrm{H}=0.88$ (3) to 1.09 (4) \AA.

Figures
Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 50% probability level and the atom numbering scheme. The hydrogen atoms are drawn as spheres with arbitrary radii. The unlabelled half of the molecule is related by the symmetry operation: $1 / 2-x, 5 / 2-$ $y,-z$.

(E)-1,2-Bis\{4-[dimethyl(vinyl)silyl]phenyl\}ethene

Crystal data	
$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Si}_{2}$	$F_{000}=752$
$M_{r}=348.62$	$D_{\mathrm{x}}=1.066 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, C2/c	Mo Ka radiation
Hall symbol: -C 2 yc	$\lambda=0.71073 \AA$
$a=21.762(2) \AA$	Cell parameters from 2322 refle
$b=6.2880(9) \AA$	$\theta=5-22^{\circ}$
$c=19.159(2) \AA$	$\mu=0.16 \mathrm{~mm}^{-1}$
$\beta=124.05(2)^{\circ}$	$T=295(2) \mathrm{K}$
$V=2172.2(7) \AA^{3}$	Prism, colourless
$Z=4$	$0.3 \times 0.2 \times 0.15 \mathrm{~mm}$
Data collection	
Kuma KM4CCD four-circle	1441 reflections with $I>2 \sigma(I)$
diffractometer	$R_{\text {int }}=0.028$
Radiation source: fine-focus sealed tube	$\theta_{\text {max }}=26.0^{\circ}$
Monochromator: graphite	$\theta_{\min }=3.4^{\circ}$
$T=295(1) \mathrm{K}$	$h=-26 \rightarrow 25$
ω scans	$k=-7 \rightarrow 5$
Absorption correction: none	$l=-19 \rightarrow 23$
5962 measured reflections	
2116 independent reflections	

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.120$
$S=0.99$
2116 reflections
165 parameters

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
All H -atom parameters refined

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.07 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.011$
$\Delta \rho_{\max }=0.25$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
C1	$0.51385(10)$	$0.4316(3)$	$0.38537(10)$	$0.0464(4)$
Si1	$0.41638(3)$	$0.33021(8)$	$0.33072(3)$	$0.0486(2)$
C11	$0.35377(13)$	$0.5625(4)$	$0.30334(19)$	$0.0733(7)$
H11	$0.3499(16)$	$0.626(4)$	$0.3411(18)$	$0.118(12)^{*}$
C111	$0.30599(16)$	$0.6356(5)$	$0.2302(2)$	$0.1040(10)$
H11A	$0.2932(18)$	$0.546(5)$	$0.175(2)$	$0.163(14)^{*}$
H11B	$0.2738(19)$	$0.779(6)$	$0.221(2)$	$0.161(12)^{*}$
C12	$0.3915(2)$	$0.1875(5)$	$0.23335(17)$	$0.0760(7)$
H12A	$0.3940(15)$	$0.270(4)$	$0.1977(17)$	$0.108(9)^{*}$
H12B	$0.3425(16)$	$0.138(4)$	$0.2051(17)$	$0.114(10)^{*}$
H12C	$0.4199(16)$	$0.075(4)$	$0.2443(18)$	$0.123(12)^{*}$
C13	$0.41000(17)$	$0.1498(5)$	$0.40318(18)$	$0.0709(7)$
H13A	$0.4377(16)$	$0.032(5)$	$0.4133(17)$	$0.118(11)^{*}$
H13B	$0.3635(16)$	$0.098(4)$	$0.3774(16)$	$0.105(9)^{*}$
H13C	$0.4297(14)$	$0.219(4)$	$0.4570(18)$	$0.110(9)^{*}$
C2	$0.57489(11)$	$0.3167(3)$	$0.44767(13)$	$0.0557(5)$
H2	$0.5684(11)$	$0.186(3)$	$0.4625(13)$	$0.074(6)^{*}$
C3	$0.64669(11)$	$0.3892(3)$	$0.48563(13)$	$0.0573(5)$

H3	$0.6870(11)$	$0.309(3)$	$0.5288(13)$	$0.070(6)^{*}$
C4	$0.66139(9)$	$0.5860(3)$	$0.46398(10)$	$0.0479(4)$
C41	$0.73897(11)$	$0.6599(3)$	$0.50658(12)$	$0.0523(5)$
H41	$0.7708(11)$	$0.565(3)$	$0.5483(12)$	$0.070(6)^{*}$
C5	$0.60055(11)$	$0.7024(3)$	$0.40152(12)$	$0.0561(5)$
H5	$0.6066(10)$	$0.837(3)$	$0.3870(11)$	$0.053(5)^{*}$
C6	$0.52923(11)$	$0.6282(3)$	$0.36415(12)$	$0.0540(5)$
H6	$0.4892(11)$	$0.720(3)$	$0.3224(13)$	$0.068(6)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0505(10)$	$0.0467(10)$	$0.0418(9)$	$-0.0040(8)$	$0.0258(8)$	$0.0000(8)$
Si1	$0.0483(3)$	$0.0469(3)$	$0.0455(3)$	$-0.0072(2)$	$0.0232(3)$	$-0.0017(2)$
C11	$0.0626(14)$	$0.0618(14)$	$0.0896(18)$	$-0.0025(11)$	$0.0389(14)$	$0.0000(13)$
C111	$0.0713(18)$	$0.094(2)$	$0.123(3)$	$0.0154(16)$	$0.0397(19)$	$0.026(2)$
C12	$0.093(2)$	$0.0719(17)$	$0.0589(15)$	$-0.0191(16)$	$0.0399(15)$	$-0.0137(13)$
C13	$0.0662(16)$	$0.0803(18)$	$0.0668(16)$	$-0.0121(14)$	$0.0376(14)$	$0.0092(14)$
C2	$0.0566(12)$	$0.0506(11)$	$0.0546(12)$	$-0.0064(9)$	$0.0279(10)$	$0.0076(9)$
C3	$0.0523(12)$	$0.0584(12)$	$0.0508(11)$	$0.0010(9)$	$0.0226(10)$	$0.0137(9)$
C4	$0.0479(10)$	$0.0543(10)$	$0.0404(10)$	$-0.0045(8)$	$0.0241(8)$	$0.0013(8)$
C41	$0.0504(11)$	$0.0580(12)$	$0.0427(10)$	$-0.0026(10)$	$0.0225(9)$	$0.0048(10)$
C5	$0.0565(12)$	$0.0522(12)$	$0.0550(12)$	$-0.0068(9)$	$0.0285(10)$	$0.0119(9)$
C6	$0.0490(11)$	$0.0536(11)$	$0.0508(11)$	$0.0005(9)$	$0.0227(9)$	$0.0110(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

C1-C2	1.391 (3)
C1-C6	1.399 (2)
C1-Si1	1.8748 (18)
Si1-C12	1.857 (2)
Si1-C13	1.857 (2)
Si1-C11	1.862 (2)
C11-C111	1.275 (4)
C11-H11	0.87 (3)
C111-H11A	1.08 (3)
C111-H11B	1.09 (4)
C12-H12A	0.88 (3)
C12-H12B	0.94 (3)
C12-H12C	0.88 (3)
C13-H13A	0.90 (3)
C2-C1-C6	116.06 (17)
C2- $\mathrm{C} 1-\mathrm{Si1}$	122.72 (13)
C6-C1-Si1	121.21 (14)
C12-Si1-C13	110.72 (15)
C12-Si1-C11	109.90 (15)
C13-Si1-C11	109.92 (14)
C12-Si1-C1	109.15 (12)

sup-4

supplementary materials

C13-Si1-C1	108.97 (11)
C11-Si1-C1	108.13 (9)
C111-C11-Si1	127.6 (3)
C111-C11-H11	110.4 (19)
Si1-C11-H11	121.5 (19)
C11-C111-H11A	119.2 (17)
C11-C111-H11B	122.3 (17)
H11A-C111-H11B	118 (2)
Sil-C12-H12A	112.7 (18)
Si1-C12-H12B	109.7 (17)
H12A-C12-H12B	107 (2)
Si1-C12-H12C	112.1 (19)
H12A-C12-H12C	108 (3)
H12B-C12-H12C	107 (2)
Sil-C13-H13A	109.9 (18)
Si1-C13-H13B	109.9 (16)

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.02(19)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	$120.5(12)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	$118.4(12)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$117.00(17)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 41$	$123.39(16)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 41$	$119.61(17)$
$\mathrm{C} 41^{\mathrm{i}}-\mathrm{C} 41-\mathrm{C} 4$	$126.4(2)$
$\mathrm{C} 41-\mathrm{C} 41-\mathrm{H} 41$	$123.1(13)$
$\mathrm{C} 4-\mathrm{C} 41-\mathrm{H} 41$	$110.3(12)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$121.37(18)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	$117.6(11)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	$120.9(11)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$122.13(19)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	$117.1(12)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	$120.8(12)$

Symmetry codes: (i) $-x+3 / 2,-y+3 / 2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12 — \mathrm{H} 12 \mathrm{~A} \cdots \mathrm{Cg}^{\mathrm{ii}}$	$0.88(3)$	$2.99(3)$	$3.872(3)$	$174(2)$
$\mathrm{C} 13 — \mathrm{H} 13 \mathrm{C} \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	$0.97(3)$	$3.03(3)$	$3.912(4)$	$152(2)$

Symmetry codes: (ii) $-x+1, y,-z+1 / 2$; (iii) $-x+1,-y+1,-z+1$.

supplementary materials

Fig. 1

